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CANONICAL CONSTRUCTION OF FINITE ELEMENTS 

R. HIPTMAIR 

ABSTRACT. The mixed variational formulation of many elliptic boundary value 
problems involves vector valued function spaces, like, in three dimensions, 
H(curl; Q) and H(Div; Q). Thus finite element subspaces of these function 
spaces are indispensable for effective finite element discretization schemes. 

Given a simplicial triangulation of the computational domain Q, among 
others, Raviart, Thomas and Nedelec have found suitable conforming finite 
elements for H(Div; Q) and H(curl; Q). At first glance, it is hard to de- 
tect a common guiding principle behind these approaches. We take a fresh 
look at the construction of the finite spaces, viewing them from the angle 
of differential forms. This is motivated by the well-known relationships be- 
tween differential forms and differential operators: div, curl and grad can all 
be regarded as special incarnations of the exterior derivative of a differential 
form. Moreover, in the realm of differential forms most concepts are basically 
dimension-independent. 

Thus, we arrive at a fairly canonical procedure to construct conforming 
finite element subspaces of function spaces related to differential forms. In 
any dimension we can give a simple characterization of the local polynomial 
spaces and degrees of freedom underlying the definition of the finite element 
spaces. With unprecedented ease we can recover the familiar H(Div; Q)- and 
H(curl; Q)-conforming finite elements, and establish the unisolvence of degrees 
of freedom. In addition, the use of differential forms makes it possible to 
establish crucial algebraic properties of the canonical interpolation operators 
and representation theorems in a single sweep for all kinds of spaces. 

1. INTRODUCTION 

Finite element methods have emerged as an indispensable tool for the computer 
simulation of large-scale problems of computational physics and engineering. In 
particular, they are superior to any other approach when complex geometries have 
to be handled or strong anisotropy of the problem suggests an adaptive policy. 

Technically speaking, the finite element method offers a means of discretizing 
the variational formulation of boundary value problems for partial differential equa- 
tions. This is usually achieved by specifying a finite dimensional subspace of the 
continuous function spaces occurring in the variational formulation. After picking a 
basis, comprising neatly localized basis functions, the discrete problem is converted 
into a sparse system of equations. 

It takes three ingredients to define a finite element space completely (see [8], 
Chapter 3). First, a triangulation of the computational domain Q c R', n E N, 
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has to be created. Its individual elements are supposed to have a simple shape. 
Then for each element a suitable space of polynomials has to be provided, and, 
after that, a set of global degrees of freedom linear forms, whose values uniquely 
characterize a finite element function must be defined. 

A finite element space is called conforming, if it is a proper subspace of the 
original continuous function space. This can' be ensured through enforcing certain 
coupling conditions across interelement boundaries via a judicious choice of global 
degrees of freedom. 

A special class of finite element schemes are affine families of finite element spaces 
(see [14, Ch. 2, ?2.3]). They rely on the definition of local spaces and degrees of 
freedom on a reference element. Adequate transformations to general elements, 
which must not affect the values of degrees of freedom, complete the construction. 
These spaces are especially convenient for both implementation and analysis. 

Much effort has been spent on devising viable finite element schemes for varia- 
tional problems set in the Sobolev spaces H1(Q) and H2(Q). Yet, other spaces of 
vector valued functions like H(Div; Q) and H(curl; Q), based on "incomplete" dif- 
ferential operators from vector analysis, are of importance in manly physical models, 
e.g. Maxwell's equations [6, 7], and so-called mixed variational formulations (see 
[11] and [19]). 

This paper is devoted to the construction of conforming finite elements for spaces 
arising from vector analytic differential operators in arbitrary dimension. To keep 
the presentation simple we confine ourselves to simplicial triangulations. We show 
how general principles guide the choice of adequate local spaces and degrees of 
freedom that naturally yield affine families of conforming finite element spaces. 

Our approach is the ultimate generalization of a variety of schemes proposed 
earlier. In [28] Raviart and Thomas introduced H(Div; Q)-conforming finite ele- 
ments in 2D, which were later dubbed Raviart-Thomas elements. The 3D case, for 
both H(curl; Q) and H(Div; Q), was dealt with in [26]. The constructions were 
given for both simplices and parallelepipeds. Extensions to prisms [26, 24] and 
the isoparametric case followed soon. Several authors proposed slight alterations 
of the original schemes in order to enhance approximation properties or facilitate 
implementation [9, 10, 27]. 

In a sense, we take our cue from considerations that have been developed in the 
engineering community [3, 5]. Motivated by the elegant formulation of Maxwell's 
equations in the calculus of differential forms [2, 15], discretizations were sought 
that fit this point of view. First order schemes, called Whitney forms, were proposed 
as conforming finite element methods for spaces of differential forms [4, 25, 30]. In 
two and three dimensions they agree with Raviart-Thomas and Nedelec elements. 

The plan of the paper is as follows: 
The next section gives a brief introduction to the concept of differential forms, 

and discusses their essential features. They are a key instrument for the unified 
examination of finite element spaces. We summarize the relationships between 
differential forms and vector fields. The 3D case receives particular scrutiny 

In the third section a general recipe for the construction of the local ansatz spaces 
is presented. We put forward three basic requirements and construct local spaces 
complying with them. We can confirm that the spaces thus obtained agree with 
established schemes. 
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The forth section explores the issue of suitable degrees of freedom. We arrive at 
a remarkably simple general formula, and then show that all usual requirements on 
valid degrees of freedom are met. 

The last section deals with the issue of whether finite element functions that 
belong to the kernel of the differential operator can be represented through discrete 
potentials. We give a positive answer, proving th'at a discrete version of Poincare's 
lemma holds for the finite element spaces presented in this paper. 

2. DIFFERENTIAL FORMS 

Differential forms had been introduced as a trim calculus in differential geometry 
and analysis. For instance, they pave the way for a unified description of differential 
operators grad, div, and curl. 

Given a n-dimensional R-vector space V, n E N, we write Al (V) for the space 
of alternating l-multilinear forms (V)l R IFR. In addition, we set A0(V) = R. For 
1 > 1 the space A'(V) has dimension (7 ). 

Apart from ordinary vector space operations for multilinear forms, a so-called 
exterior product A : il(V) x Ant(V) }-* An+'(V), a bilinear mapping, is of great 
importance. 

If Z C Rn is a k-dimensional C1-manifold, 1 < k < n, and x E Z, we denote by 
Tz(x) the k-dimensional space spanned by vectors tangential to Z in x. 

Definition 1 (Differential forms). A differential form w of order 1 E No defined on 
a k-dimensional, piecewise C1 manifold Z c R n is a mapping w: Z X- Al (TE (.)). 
If Z is piecewise smooth of class C0n+1 and this mapping is m-times continuously 
differentiable except maybe on a set of measure zero, it is said to be of class cm. 

Differential forms of order 1 form a vector space denoted by DYF (Z). For those of 
class m we write DYlIm(Z). Besides, we stick to the convention that DFl(Z) {O} 
if 1 > k or 1 < 0. 

If Z coincides with an open domain Q c RnR, TQ (x) = R" for all x E Q is 
immediate. A basis of Al(R"T) is given by the set 

(1 dxil A ... A dx-1 j {1, . .. , n}, 1<_ i <_ 1,il < i2 < . .. < ill 

of l-multilinear forms. The elementary building blocks {dxl,... ,dx,,} form the 
canonical dual basis of (Rn)I . Thus any w E DFl (Q) has a representation 

(2) w C ( P dx A... A dxil, 
(il,--.,il) 

where the indices run through all combinations admissible according to (1) and the 
pi1,...,:Q X-* R are coefficient functions. 

Traces of differential forms on lower dimensional subsets of Z are defined in a 
straightforward fashion. 

Definition 2 (Trace of differential forms). Let F c Z be a piecewise smooth m- 
dimensional manifold contained in the d-dimensional C1-manifold C ]Rn ) 0 < 

m < d < nr. For w E DFl(Z) the trace yrp(W), often denoted by WIr, is an i-form on 
r given by 

Wlr(X) :(Trx(x R) x E rF. 
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The three most important concepts in the theory of differential forms are: 

* integrals of i-forms over piecewise smooth i-dimensional manifolds; 
* the exterior derivative dw E DFY+1(Q) of a differential form w E DY'(Q); 
* the transformation of differential forms w X-* 1w under a change of variable 

described by a diffeomorphism b. 

For a comprehensive discussion of the theory of differential forms, see the mono- 
graph [13]. We only recall four fundamental theorems establishing close relation- 
ships between the above mentioned concepts: 

* The so-called Stokes' theorem for differential forms states that 

(3) Jw Jdw) Vc E DF1,D"(Z) 

for an oriented (1+1)-dimensional manifold Z with piecewise smooth boundary 
az. 

* Transformations and exterior products commute: 

(4) V( A o-) = * A 

* Transformations and exterior derivatives commute: 

(5) d d(4* w) = * (dc). 

* Integrals are invariant under transformation: 

(6) J J 

@b(Q) Q 

For rigorous statements and proofs we refer to [13]. 
Of course, the differential operator d has no proper inverse. Yet, a sort of partial 

inverse is supplied by the following potential mapping: Assume that the domain 
Q c Rn is star-shaped with respect to a. Then, for I > 0, the linear potential 
mapping ka : DF10 (Q) X-* D.F1-'10(Q) is defined by (x E Q,V2 ) 

1 

(7) kXa(W)(X) (Vl... ** V1_1) :=Utl 1U(a + t(xz-a)) (x -a, vl,. .., vi-1) dt. 
0 

For E DYF1 (Q), ka(W) is a valid (1 - 1)-form and satisfies (cf. [13], formula 
2.13.2) 

(8) d(ka (W)) + ka (dW) W . 

An immediate consequence of this property is the representation theorem: 

Theorem 3 (Poincare's lemma). For a star-shaped domain Q c Rn every w E 

DYF"1 (Q) (1 > 1) with dw = 0 is the differential of an (1 - 1)-form over Q. 

By introducing a basis of the finite dimensional space A' (R") an isomorphism 
(of vector spaces) between A' (RnI) and RD with D =(n) is established. By the 
same procedure we can immediately identify D.F1 (Q) and vector fields QR I)R. 

The basis we are going to choose is that from (1) with the basis functions mul- 
tiplied by suitable factors ?1. Thus, we get isomorphisms of vector spaces 

(9) ofn :DF1(Q) X f {Q X~ *RD} 0 < I < n 
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The isomorphism (9) permits us to define differential operators Bn, n N, 
O < 1 < n, on smooth vector fields by demanding that the diagram 

DF",00 (Q) J 1 , CO (Q) 

commutes. 
Conversely, spaces of differential forms can inherit norms from the related spaces 

of vector fields. Since the natural habitat of finite element schemes is Hilbert spaces, 
we introduce an L2-norm on D.Fl (Q) by requiring the isomorphisms Ty to be 
isometric: 

(10) ||Wf|L2(Q) nlT (w) flL2(9) 

The completion of the space D.Fl (Q) with respect to this norm will be desig- 
nated by LDE I(Q). It goes without saying that the actual norm of a differential 
form depends on the choice of basis forms. Nevertheless, the definition of the spaces 
remains the same for all possible bases. 

Finite element approximations usually live in spaces of greater smoothness than 
L2. These spaces, designated by H(Bn; Q), 0 < 1 < n, arising from norms involving 
the exterior differential can be obtained as the completion of DF", (Q) with respect 
to the norms 

WH(B:;Q) WIL2(Q) + IIdwI L2 (Q) 

Recalling Stokes' theorem for differential forms, we conclude that for differential 
forms in H(B[; Q), 1 < 1 < n, their traces on OQ are well defined i-forms in 

L21,I (OQ). 
To shed light on these relationships we take a closer look at the case n = 3. 

Aiming to retrieve known vector-analytic differential operators as the operators 
k we select the basis {1} for AO, the basis {dxl, dx2, dx3} for A1, the basis 

{dx2 A dx3, dx3 A dx1, dx1 A dx2} for A2, and the basis {dxl A dX2 A dx3} for A3. 
The principal differential operators from vector analysis turn out to be the proper 

counterparts of the exterior differential. Precisely speaking, we have Bo = grad, 
B13 = curl, and B 3 = div. Similarly, the exterior product of differential forms 
in 1R3 is linked to basic operations for vectors by Ty3 (w A (X) = w3W x cf3r- for all 
w,- (E DF1 1 (Q) and T3 (wA) - KT3w , T3) for all w E tDF1 1 (Q), D DF2'1 (Q). 

Also the transformations of differential forms correspond to familiar transforma- 
tions. We now assume Q, Q c IR and consider a C1-diffeomorphism 4 : Q X-* Q. 
Moreover, orientation must be preserved, i.e. det D1? > 0. 

* For 0-forms w, which are plain scalar functions, we trivially have 

(1 1) ( 0 :=TOW, p:TO.W = (oo ). 

* For a 1-form we get, by plugging definitions into each other, 

(12) := T1w, T>TI:W*w = DJ? ( o ). 

So we have recovered the correct transformation formula for the contravariant 
transformation of H(curl; Q)-vector fields presented in [26], formula (5). 
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* For 2-forms, tedious manipulations yield 

(13) u := T2 X, U := T2P*W U = det D (D (D 41 (u o 4) 

This is exactly Piola's transform (see [28], formula (3.17) and [11], formula 
(1.45)), a covariant transform of vector fields in H(Div; Q). 

* For a 3-form w w dx1 A dX2 A dX3 the transformation reads 

(14) w := T3 , w := T3*w w = det D (wo ) 

Remark 4. In a finite element environment 4 might violate det DJ? > 0. To cope 
with erratic orientations of elements, each transformation formula has to be multi- 
plied by sgn(det D). 

A straightforward consequence of the commutative property stated in (5) is that, 
for coniventional functions and vector fields alike, transformations and appropriate 
vector analytic operators are interchangeable. 

3. LOCAL ANSATZ SPACES 

This section introduces suitable local polynomial spaces as the foundation of 
finite element approximation schemes for the function spaces H(BiJ) Q), 0 < I < n. 
This is the second main ingredient for a valid finite element construction. 

Since affine families of finite elements on simplicial meshes are our target, we 
need only deal with local ansatz spaces on the reference simplex T. As usual, T 
is the simplex spanned by the canonical basis vectors el,... ,en of R . M4i(T), 
O < i < n, stands for the set of all i-dimensional simplices spanned by i + 1 vertices 
of T. For the local ansatz spaces on the reference element we adopt the notation 
Xk (T), where 1 stands for the order of the differential forms and k E N0 is related 
to the degree of the polynomials. 

Once we have these spaces at our disposal, canonical transformations carry them 
to an arbitrary element T. Formally, the finite element space over T can be de- 
scribed by 

Xl (T) := *X1 (T) 

where : T X-* T is an affine mapping. 
For convenience, we adopt special notations for spaces of "polynomial type" over 

an m-dimensional simplex S. A tilde will invariably tag spaces of homogeneous 
polynomials. For k, 1 E Z we define 

Pk(S) Space of m-variate polynomials of degree < k on S, 

D'PJ(S) D{w E F" (S); i.. , EPk(S) in (2)}, 

Pk (S) space of m-variate homogeneous polynomials of degree = k on S, 

9k(S) {w {E DF"(S); (ij1.. Pk(S) in (2)} 

We follow the convention that for 1 < 0, 1 > m and k < 0 these spaces are to be 
trivial. 
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First we recall some well-known expressions for the dimensions of polynomial 
spaces: 

dimPk(S) (mAs )k 

dim Pk (S) =(m -'k - 1) 

Further, we remark that the definition of the spaces DP'k (S) and DPk (S) is ut- 
terly independent of the choice of the basis of A'(Ts). In addition, the space of 
homogeneous polynomial differential forms belonging to the nullspace of the exte- 
rior derivative is of importance: 

NA/k(S) := { DPk(S); dw = 0}. 

A careful examination of the finite element approaches to H(Div; Q) [26, 11, 28] 
and H(curl; Q) [26] reveals the following common properties: For k E N0 

(A) dXk(T) c DPk (T) 

(B) {w E Xk(T); dw = 0} C DT'jl(T), 

(C) Xk(T)lf C Xk(f) for all "faces" f E Mn41 (T) and 1 < n. 

These requirements will guide our construction of Xkl(T). Thus, we opt for the 
following choice of local spaces, which turns out to possess the desired properties: 

For a finite element approximation of degree k E N0, the polynomial space over 
the reference simplex is given by 

(16) Xk(T) := DP1jT) + ka (NVk (T)) 

for an arbitrary a E T. This means that the local finite element spaces are composed 
of a space of full multivariate polynomials and a potentially incomplete space of 
polynomials obtained through the potential mapping. 

To check the validity of the definition we have to make sure that we end up 
with the same space X '(T) for any a. For this purpose we need to know that the 
potential mapping increases the degree of polynomials by no more than one: 

Lemma 5. For w E ThPJT), k > 0, we know that dw E DP9s'j(T) and ka(W) E 
-1-1 

DT',l-j7j (T). In the special case a = 0, the even stronger assertion ko (w) E DIPk+I (T) 
holds true. 

Proof. (I) Ordinary differentiation reduces the degree of a polynomial by exactly 
one. Since the exterior derivative involves first order derivatives of the coefficient 
functions of a differential form, the first assertion is obvious. 

(II) By virtue of the linearity of the potential mapping, we only have to establish 
the second assertion for w of the form 
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where p E Pk (Q). Citing the definition of the inner product of differential forms, 
we have, with Vi = (V., . * Vi,)T (E Rn, i = 1, ...I 

w(tx + c)(x-a, vi,... *, v11) 

xi Xi-ail Vi,il ... Vl-i,il 

= p(tx + c) * det ( w 2 
xi X -ail Vi,il ... Vi-i,il 

By the recursion formula for determinants this expresssion is equal to 

w(tx + c)(x-a, vl,... , v1-1) 

V,il ... V. - l 

- p(tX + c) (I)k(X - a.k) det v1,ik . l-l,ii , 
k=1 

where the - marks a line of the matrix which has to be omitted. Thus we see that, 
with the token * standing for v1,... ,vi_1, 

w(tx + c)(x - a, .) 

= Z&(-1)kp(tx + C) (cik-aik ) dxil A ... A dxik A ... A dxil). 
ECPk+I1 (Q) 

Plugging this into the definition (7) of the potential mapping ka (w) gives the second 
contention. 

In the case a = 0, c = 0 the above expression reduces to 

w (tX)(X, *) = tk S ( k1)kp(x)xik dxi, A ... A dxik A ... A dxz1 (.) 

Ck+l (52) 

Thus, the coefficient functions of ko(w) remain homogeneous polynomials. D 

Now we are able to show that the definition (16) is independent of a. First recall 
that for p E Pk (T) the difference p(-)-p(--c) belongs to 2'k1- (T) for any c E RT. 
Therefore we can decompose w D Pl(T) in 

w(a + t(x -a)) = w(tx) + -x(tx) , 

where wr E DPl- (T). Using the definition of the potential mapping, we get 

ka (W) (X) (-) 

1 1 

=- J tl1w(a+t(x-a))(a,) dt +Jt'1 (w(tx) + w(tx)) (x, .) dt 

0 ED1-1 0 

ko(w)(x)(.) + r(x)(.) 

with an rq D'lPh-1(T) according to Lemma 5. 



CANONICAL CONSTRUCTION OF FINITE ELEMENTS 1333 

We now scrutinize a few special cases of local ansatz spaces generated by formula 
(16): 

-1?1 
* For I =rn we get Xk(T) = DPt (T), since XJVk (T) = {0}. 
* For any w E D.F0'1 (T) we have w = ko(dw) by (8). Obviously this involves 

1 ^ o * 

ko(7LkA(T)) =DPk+l(T) 

as dw E HA(k(T) for all w E DPk+l(T). An easy consequence is that in the 
case 1 = 0 

X,? (T) = DWPk? (T) + D+1 (T) 

i.e. the full space of polynomnials of degree < k + 1. 
* For 1 = n-1, since 7 kT(T) = kD(T), we end up with 

n- ( n , 
X>n-1(T) = D-1 (T) + ko (DPk (T)) 

Now consider an n-form rE E Pk (T) of the form r(x) p(x) dx1 A ... A dx7, 
with p E Pk(T). Then we have 

ko (,) (x) (el . ., e,.. . ,en) f tn-I hr(tx)(x, el, . . ,j, . . ,en) dt 
0 
1 

- ftn- 1kp(x)( 1)il xj dt 
0 

ikp() (1)j+l x3. 

The natural basis of An-1 (Rn) is given by 

(17) {(-1)j+1 dxl A ... A dxj A ... A dXn}= 

From the previous computations we conclude that 

(18) 1ko(q) (x) i= kp(x)Zxj (-)J1dx1A..Adx; A ... dXn 

We can use the basis (17) to switch to vector fields. In this context (18) means 

tfn_ (ko (,)) (E X -Pk(T). 

Another lesson from (18) is that any such vector field can be created as the 

image of an rq E DPk (T) under the potential mapping. All together, we have 
shown that 

Tfn_ (Xkn- l (T ) = -Pk (T ) ' tPk (T). 

This is the familiar expression for the local Raviart-Thomas spaces (see [28, 
26, 11]). 

Another special case is that of lowest order finite element approximations, i.e. k 
1+1 +1? 

0. The equality hAJVf (T) D20 (T) promises simple formulas. In [4] so-called 
Whitney-forms (a notion developed in [31]) were introduced as a basis for the local 
ansatz spaces Xo (T), 1 < n. In n-dimensionsal space they are given by 

1 

(19) (-)jAi dAio A . .. A dki A . .. A dAil, f io) . .. ,il } c fo, . .. ,n}, 
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where A- designates the barycentric coordinate function associated with vertex j 
of the n-simplex T. We aim to show that the space of Whitney-forms agrees with 
Xl (T). 

Again we can return to the reference simplex T. There we have dAj = dx3 for 
j=l,... ,n. Set 

r:=dxj, A . .. A dx l+l {ji) .. * *vl+l} C f I* *.*, n} 

We now evaluate the potential mapping (7) for rq E DPj(T). To that end we 
select {i1, ... ,il} c {1, ... ,n} such that 

ko(,q)(x)(ej,. .. .e / tlr(xt)(x,eii, . ,eil)dt 
0 

31? 2il,l ,3? 211,31? 

= + det . .. 

f0, if {i, ... ,il} ( {jlv * jl+,-}, 
1 + 3m' +1Xjl if {ii, . .. ,il}U {jm} = {ji,. * *vjl+l-}. 

By the definition of the linear forms dxj, this means 

1+1 

ko (,q) (x) = 15 xj,, dxj 1 A . .. A dx,,,- A . .. A dxj1+1 
m=l 

This describes all Whitney-forms whose index set {io,... ,il} according to (19) 
does not contain 0. Choosing another vertex ej of T as the reference point for the 
potential mapping, we get another collection of Whitney bases with j missing in the 
index set. Running through all vertices, we thus obtain the entire set of Whitney 
bases. 

So far we know that all Whitney-l-forms on T belong to XIl(T). If there are as 
many Whitney bases as the dimension of Xl(T), the spaces must agree. Applying 
elementary combinatorics to (19), we deduce that there are (nj+l) Whitney bases. 

That this is equal to dim X0 (T) will be proved right now. 

Theorem 6. For T C Rn the dimensions of the local ansatz spaces Xk (T) satisfy 

kix(T)= i(+l)i-I) i) 

for k E No and O< l <n. 

Proof. (I) First we settle the case of 0-forms. As explained above, X0(T) - 

DP0 1(T), so that the dimension of XJ?(T) is equal to the dimension of the space 
of multivariate polynomials of degree < k + 1. Thus, the assertion of the theorem 
for the case l = 0 follows from (15). 

(II) In the general case l > 0 we first establish a recurrence relation for dim Xl (T). 

Our task boils down to figuring out the dimension of k0(ThVk (T)), because from 
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11 - 1?1 
Lemma 5 we learn that DPtk(T) n ko(TJVk (T)) 0, and, consequently, 

(20) dim X~k(T) dim D Pk(T) + dim ko (HJVk 1) 

We claim that 

(21) DPk+l(T) = ko(H7Vk (T)) JHJVk+1(T) 

is a direct sum. Too see this, note that due to (8) and Lemma 5 any w E DPk+1(T) 

has such a decomposition. Now, pick 27 E ko(ThVk (T)) n 7-Kk?l(T), that is, 

27 = ko(w) for a suitable w E 7JVNk (T). Because dq = 0 = we conclude that 
0q =; hence all criteria for a direct sum are satisfied. 

In terms of dimensions, (21) means 

(22) dim DP_k+1l(T) = dim ko(H1Vk (T)) + dim 7Lfk?+1 (T) . 

We point out that by Lemma 5 and (8), and since applying the exterior derivative 
twice results in zero, 

'UJVk+l(T) = d(DPk+2(T)) 

Thanks to the well-known relationship between the rank and the dimension of the 
-1-1 1 

null space of the linear mapping d: DPk?2 (T) I? ?Kk+l (T), we can establish that 

(23) dim 'HA1k+ (T) = dim DPk+2 (T) - dim Thk+2 (T). 

The dimensions of the spaces ID'Pk+l (T) and DPk+l(T) are available as products 
of the dimension of the spaces of alternating multilinear forms and the dimension 
of the spaces of the polynomials that occur as coefficient functions. Furthermore, 
it is clear that DPl(T) D Pk1 (T) is a direct sum. Then, plugging (22) into (20), 
we get 

(24) dim Xk (T) = dim DPlk+l (T) - dim rT k+?l(T)- 

We rewrite (24) by means of (22) and then rely on (24) itself with 1 - 1 instead of 
1. By (15) and addition theorems for binomial coefficients we can derive 

dim Xk (T) dim D'Plk+l(T) - dim DPk+2(T) + dim IP(T) - dim XI-+4(T) 

(nA tn+k+lA n 8 n+k+lI 
- (r)(rtk?n n- 

+( n )(n ?k?2) _dim Xl (T) 

(+ 1)(n+?k+l1) _dimX 1(T). 
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It remains to confirm that the expression for dim Xlk(T) satisfies the recurrence 
relation. This amounts to the identity 

tn n+1 (iA Kk +l 
n 

n + I0 i 0 k + 1 

(tn +1)(t? + kn 1) 

which leads to 

1 n + I8 ti+ I8 k + 1 tn + I0 n + k + I0 

Using summation formulas for binomial coefficients, this equality can be established 
through lengthy computations, which we are going to skip here. D 

Lemma 7. Let f denote an (n - 1)-dimensional 'face" of the reference simplex T. 
Then the trace of w E Xl (T) on f belongs to the space w E X4(f). 

Proof. Obviously, the trace of a form in D1Pl(T) on f belongs to Xl(f). So we 
need only take care of the forms in the image of the potential mapping. 

We pick an arbitrary a E f and make it the reference point in the definition 
(16). As we have seen, this does not affect the space itself. FRom the definition of 
the trace of a differential form it is clear that 

(ka(W))If= ka(WIa) 

As (dw)f = d(wy), the proof of the lemma is finished. D 

4. DEGREES OF FREEDOM 

Our focus on affine families of finite elements permits us to supply the definition 
of the local degrees of freedom on the reference simplex T only. We are looking for 
aset {k1,... ,Nkl}, Nk, =dimnXk(T), 1 e {0,... ,3}, kEN0, of linear forms 

ki Xlk(T) -> R, iE 1l,... ,Nk-,1 

that satisfies the requirements: 

(DI) Unisolvence: ..i..... ., kNkl 
} is a basis of the dual spaceXk(T)' 

(D2) Invariance: Degrees of freedom remain invariant under canonical transfor- 
mations of differential forms accompanying a transformation of the reference 
simplex. 

(D3) Locality: For any face f of T and w E Xl (T) the trace w is uniquely deter- 
mined by certain degrees of freedom that depend only on w1f. 

The first requirement (DI) means that there must be a one-to-one correspon- 
dence between the values of the degrees of freedom and the finite element approxi- 
mation on an element. 

The second condition (D2) reflects our interest in affine families of finite elements. 
It ensures that the arbitrary choice of a reference element has no impact on the 
final finite element space. It is also vital for the procedure of turning local degrees 
of freedom into global ones (see [14] for details). 

The third condition (D3) must hold in light of the following theorem. It guar- 
antees that the global degrees of freedom obtained from the local ones provide 
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sufficiently tight "glue" between the elements to enforce conformity of the finite 
element approximation. 

Theorem 8 ("Patch condition" for differential forms). Let Q be partitioned into 
Q, and Q2 such that Q1 UQ2= Q and both subregions also possess piecewise smooth 
boundaries. Then a differential form w E L2X (Q), l <rn, with w1Q E H(B[; Q2), 
i = 1, 2, belongs to H(Bn; Q) if 

wlr = wIr, in L'D- I (F), 

where wt stands for the restriction of w to Qi, i = 1, 2, and F = Q, n Q2. 

The proof of this theorem follows standard lines using integration by parts. For 
this reason it can be skipped. 

The relationship (6) suggests that the definition of degrees of freedom should 
rely on integrals of differential forms, in order to guarantee the inlvariance property 
(D2). For the sake of locality (D3), some of these integrals should be evaluated 
over suitable subsimplices (faces, edges and vertices in three dimensions) on the 
surface of an element. Via these considerations we arrive at the following degrees 
of freedom: 

Definition 9 (Degrees of freedom). For o E Mj(T), 0 < i < n, let {1l,o *... * v7d, }o 

d = dim D-P'-'+1 (o), denote a basis of DPj-5'+1 (o). Then we choose the linear forms 

,0 X--(T) I-4 R given by 

Im,o(w) =Jw Arm,o O EMi(T), v < i < n, 1 < m < d, 

0 

as degrees of freedom belonging to Xl (T). The set of all admissible 4Km,o will be 

denoted by E1 (T). 

The invariance of the Fim,o with respect to canonical transforms of differential 

forms is obvious from Theorem 6. The locality property (D3) can be deduced from 

Lemma 7 by a simple induction argument: Pick a face f E Mn_l(T). For o E f 
the values of the degrees of freedom Rj,o(w) are determined by Wlf. Yet, these 

linear forms 4rm,o exactly match the degrees of freedom stipulated by Definition 9 

for Xl(f). Taking unisolvence for granited, we see that Wlf is fixed. It remains to 

settle this very issue of unisolvence: 

Lemma 10. Any w E D'Pl (T) with vanishing differential dw, vanishing trace on 

all of &T, and which satisfies 

JwAw = , krEP(n-) (T) 

has to be identically 0. 

Proof We first put forth some compact notations: Given an index set I 
{il,... vim} C {1,... nr}, we abbreviate dxi := dxi1 A ... Adxi?. The set F' 
refers to the complement of I in {1,... n,r}. We write Im for the collection of all 

m-subsets of {1, . . . , n}. 
Pick an w E DPk (T), which is represented as 

w E (R dxI, 
IEIt 
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and is to satisfy the assumptions of the lemma. Writing fi for the face 9Tn {xxi =O} 
of the reference simplex, we know that {dxj}, J E It, i , J, forms a basis of A'(f2) 

Note that 

I fi E (IX 

Therefore, w1 0 implies (I, 0 for all I E It, i X I. 
Analogous reasoning for other faces parallel to coordinate hyperplanes yields the 

following representation for coefficient functions: 

where Aj stands for the barycentric coordinate function that is equal to zero on fj. 
Obviously ;I E Pk-(m-1)(T), as the degree of the polynomial shrinks by one for 
every barycentric coordinate function it is multiplied with. 

Now, we select the special test functions rl = (PI dxl, I E It, Then the expres- 
sion 

wArI J (l fAjl ) A 2 dXl A A dx f Aj )(f2A d 

~ jEI' /\jEI' 

has to vanish according to the assumptions of the lemma, as r l DP' ml)(T). 
Thus, necessarily, fI = 0. As I is arbitrary, we conclude that w = 0. D 

Lemma 11. If an w E Xl (T) makes all degrees of freedom given in Definition 9 
vanish, then this differential form must be identically zero. 

Proof. We employ a "double induction" argument with respect to the dimension n 
(increasing) and the order 1, 0 < 1 < n, of the differential form (decreasing). 

(I) For n= 1 the assertion of the lemma is trivial. For arbitrary n and 1 = n 
we have Xkn DP/n(T) and only one kind of degree of freedom remaining, namely 
those of the form 

(25) Jw A for q r DP (T)- 

For w = podxj A ... A dxn pick rq = W. Then (25) is equal to fT (y2 dx. Thus the 
assumption of the lemma immediately implies o = 0 and w = 0. 

(II) Now we admit general n E N and 1 E {0, ... , n- 1}. Assume that the lemma 
holds true for differential forms of order 1 + 1 and in any dimension smaller than n. 

For any lower dimensional simplex o E M2i(T), 1 + 1 < i < n, an integration by 
parts establishes the equality 

J dw A Jd(wAq) - (-I)lJwAdAd, 

0 0 0 

with rC E DP'-l7+ (o). The second term must vanish, since, by Lemma 5, drq E 

'DPk-j+1 (o), which makes it belong to the space spanned by the "test polynomials" 
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in Definition 9. To the first term we apply Stokes' theorem, and we get 

Jd(wAq) JwA. 
0 ao 

Again, we have recovered a right hand side that can be written as a weighted sum 
of values of degrees of freedom. Hence, the first term must be zero, too. 

Recall that, according to Lemma 5, dw E Xl+j (T). Above, we have shown that 

I dw A7 = VrV e DP- ji- + 1(o), Vo E MA(T)) I + 1 < i < n . 
0 

By the induction assumption with respect to 1, this enforces dw 0. This means, 
for our particular choice of local ansatz spaces, that w E DP1 T). 

Lemma 7 tells us that E Xk(f). As we pointed out before, the degrees of 

freedom for X/ (T) that belong to a face f are suitable degrees of freedom for Xk (f). 
Relying on the induction assumption for n -1, we see that wpl; = 0. 

In sum, w complies with all assumptions of Lemma 10. It teaches us that w = 0. 
This completes one step of the induction. C: 

Theorem 12 (Unisolvence of degrees of freedom). The degrees of freedom supplied 
by Definition 9 form a dual basis of X (T). 

Proof. The previous lemma confirmed that a set of degrees of freedom according 
to Definition 9 actually spans the dual spaces of Xl(T). To verify that the degrees 
of freedom are linearly independent, we need only compare their number to the 
dimension of Xk(T) that is given by Theorem 6. If we can confirm equality, the 
proof is finished. 

A simple counting argument lets us determine the number of degrees of freedom: 

(26) card ((T)) = 2+1 't 

The first binomial coefficient is the number of simplices of dimension i that are a 
part of 9T. The second factor gives us the dimension of the spaces of alternating 
(i - l)-multilinear forms in R2. The last factor is the dimension of the polynomial 
spaces Pk-i-1 (o), where o is an i-dimensional simplex in M (T). 

As (26) agrees with the expression for dim Xlk(T) from Theorem 6, we are fin- 
ished. D 

Now, we investigate how the newly defined degrees of freedom can be recast as 
functionals on functions and vector fields in three dimensions: 

* For Sk+1(T) := T8 (X2(T)), k E N0, the classical Lagrangian finite element, 
Definition 9 motivates a somewhat nonstandard choice of degrees of freedom 
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(see also [18], Definition 3.3): For f E Sk+l(T) 

;(p() for x E Mo (T), 

k((p) f p .(pdF for Ee AM1(T) and suitable p E Pk - 1 

k((p) f p podc for f e M2(T) and suitable p E Pk-2(f), 
f 

k(p) f p .odx for suitable p E 2k-3(T). 

That these degrees of freedom are Sk+1(T)-unisolvent is a standard result. 

* In the case of Nedelec's spaces .ADk+l (T) := T3 (Xk T)) (see [26]), we can 

conivert the formulas of Definition 9 into degrees of freedom of the following 
form (see [19], Definition 5.1): For A E NADk+l(T) 

k(() f=Spf (p,t) dF for e E M1(T) and suitable p E 'k(6), 
e~~~~~~~~~~~~~~~~~~~~~~~ 

k(() := fo (p,( x n) d? for f E M2(T) and suitablepE 
f 

A (() = tf (p,) dx for suitable p E (k-2(T) 

For a vector-analytic proof of AJDk+l (T)-unisolvence, see [26]. 
* According to [11], for Raviart-Thomas spaces T2 (Xk2(T)) the appropriate 

degrees of freedom are 

i(u) f p(u,n) du for IEe M2(T) and suitable p E Pk(), 
f 

i(u) : f f(p,u) dx for suitable p E 'k-I(T) 
T 

They fit Definition 9 expressed in terms of vector fields. 
* The degrees of freedom for 3 (Xk (T)) are trivial: 

A(w) := p J wdx for suitable p E Pk (T). 

By the customary affine equivalence technique (cf. [8], Chapter 3) we now get de- 
grees of freedom for a simplex with arbitrary shape. With degrees of freedom at our 
disposal we are now able to define conforming finite element subspaces X4 (Q,Th) 
of H(B[; Q) based on the simplicial triangulation Th. They are completely charac- 
terized by the following two natural requirements: 

* The restriction of any differential form in Xk(Q;Th) to T belongs to Xl(T). 
* The values of degrees of freedom shared by several elements, i.e. those located 

on o E MA(T) for i < n, are uniquely defined for every Wh E Xk(Q; A h) 

Owing to Theorem 8 and Lemma 7, the second condition ensures H(B n; Q)- 
conformity. 
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Given global degrees of freedom, canonical interpolation operators (nodal pro- 
jectors) 

11Zi k DF, ?(Q) s -* X 1(Q; E-) 

are also declared by assigning to a continuous function that unique finite element 
function with the same nodal values. 

An all-important consequence of the choice of the global degrees of freedom is 
the "commuting diagram property" (see [11], ?II.2, [18], Section 3, and [16]), 

Theorem 13 (Commuting diagram property). Given the above definitions of the 
spaces and the degrees of freedom, the following diagram commutes: 

'D)1 O(Q) d 'D)71+ 1??0(Q) 

Xl(Q;'Th) d 

Remark 14. Unfortunately the nodal interpolation operators are not defined for all 
differential forms in the continuous spaces LDE (Q). Therefore, we had to confine 
ourselves to smooth differential forms in the formulation of the theorem. 

Proof. To begin with, we remark that the statement of the theorem is purely local, 
so proving it for the reference element T will do. 

For w E D.F" ?(T), 0 < 1 < n, we set wr:- w - w. By the definition of the 

nodal interpolation operator we see that for o E M2(T) 

(27) J7 A w0 for 7 EEDPYt-j+1(o), I < i < n . 
0 

The remainder of the proof relies on the same ideas as the proof of Theorem 11. 
Integrating by parts, we get, for q E DPk-i+l+ (o), 1 + 1 < i < n, o E Mi(T), 

i dF A =J d (- A ) - (-1)'JFA dr7 . 
0 0 0 

The second integral evaluates to zero as dr1 E DPJ-'+ (o). The first terPi is eligible 
for an application of Stokes' theorem: 

J d ( A r) J7X A . 
0 0 

Obviously 19o E MA_1(T) for o E M2(T), so that (27) also forces the first term to 
vanish. Thus 

H1 k d ( -H ) 0, 

and, since d (n1 kv) E Xj+', we obtain through the unisolvence of the degrees of 
freedom 

(28) T(d) = d J1k . 
TT 
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Taking into account that nodal values are left unchanged by canonical affine trans- 
formations, we get (28) for every element and, finally, for the entire finite element 
spaces. D 

Two immediate consequences of this theorem are worth mentioning: 

Corollary 15. The nodal interpolation operattrs preserve the kernels of the exter- 
nal derivative, i.e. 

dw = 0 for w E X(Q, Th) ' d (Hk%h ) 0 

The second corollary has to do with the p-hierarchical splitting of higher order 
finite element spaces. It is naturally induced by the family of nodal interpola- 
tion operators parameterized by the polynomial order k. Denote the p-hierarchical 
components by 

(29) XQH(Q;Th) :HB (lk H1 
k1 (k > 1). 

Q,T-h Q,h 

Corollary 16. With the notations introduced above we have 

dX AHB(Q;Th) C X?lHB( Q;Th) 

i. e. the external derivative respects the p-hierarchical splitting. 

Both corollaries play a central role in the design and the analysis of multilevel 
schemes for vector valued finite elements (see e.g. [17, 29, 21]), as well as in the 
derivation of a posteriori error estimators (see [23]). 

5. DISCRETE REPRESENTATION THEOREM 

Poincare's lemma (Lemma 3) and its analogues for function spaces are tremen- 
dously important, since they allow us to represent functions in the kernel of differ- 
ential operators by means of potentials. A viable discrete model of these function 
spaces should preserve this property. For any finite element function in the kernel 
of the relevant differential operator there should exist a suitable potential in an- 
other finite element space. Apart from being a beautiful feature, discrete potentials 
play a crucial role in the design of efficient algorithms for the solution of discretized 
boundary value problems (see [17, 1, 21, 1, 22, 20, 12]). 

It turns out that the family of finite element spaces we obtained from our canon- 
ical construction actually provides discrete potentials. To begin with, we show this 
locally for the reference element. Since canonical transformations and the exterior 
derivative commute, the result holds for an arbitrary element. 

Lemma 17. Let f0, 0 < i < n, denote the faces of the reference sirmplex T E IR'. 
Let w E Xk(T), 0 < 1 < n, have zero trace on some or all faces of T and vanishing 
exterior derivative dw. Then there exists an ry EXl -1(T) whose trace vanishes on 
the same faces and with the property that dr1 - w. 

Proof. The case that wif = 0 for all faces fi is the most difficult and will be treated 
here. This means that w,jT = 0. 

The proof is based on an induction argument with respect to the dimension n. 
For n = 1 the assertion is trivially correct. 

The potential mapping ko from (8) gives a wr := ko(w) with dw =w. Moreover, 
by (16), wr is an element of Xl- I(T). From the very definition of ko and that of 
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the trace of a differential form it is clear that 01f = O for all faces fi that have the 

origin 0 as a vertex. There is only a single face f which does not contain 0. 
In general, r1jf #0 O, but we know that d7rif = 0 and 0rlaf = O. Now set T := 7rif. 

Then, according to Lemma 7, r belongs to X171(f). As dT = 0, by the induction 
hypotheses, there exists a a E Xl2(f) such that u,af = 0 and du = on f. 

Now, let all degrees of freedom of X-2 (T) associated with f be determined by 
a. Note that degrees of freedom attached to parts of Of evaluate to zero for a. In 
addition, we set the remaining degrees of freedom in A5g2(T) equal to zero. Thanks 
to the unisolvence of the degrees of freedom, this defines a unique differential form 
v in Xk2(T), with vif = a and vi,T,f = 0. In particular, the trace of dT has to 
vanish on all faces adjacent to 0. 

Set rj := r- dv. Then dr1 = w and qlf = 0, provided that the face fi has 0 as 

vertex. On f we have 

if = rf - dvlf T - du =0. 

In short, we have found a potential Ti of w with the desired properties. This carries 
the induction one dimension further. D-1 

The validity of the global version of the discrete representation theorem is con- 
fined to simply connected domains. It shares this drawback with its continuous 
counterparts (compare [19], Chapter 1). 

Theorem 18 (Existence of discrete potentials). Let Q c R' be a bounded domain 
with simply connected polyhedral boundary, whose closure is simply connected. Q 
should be endowed with a simzplicial triangulation Th. Then for any w E Xl(Q; Th) 
with dw = 0 we can find an Ti E Xl-1 (Q; Th) such that = dTi. 

In addition, if w has zero trace on one simzply connected part F of OQ which can 
be written as a union of faces of elements, then Ti can have vanishing trace on F, 
as well. 

Proof. It is easy to see that the domain remains simply connected if a simplex T 
that has at least one face on the boundary OQ is removed: There is a continuous 
deformation of Q into Q/T. 

The proof employs an induction argument with respect to the number of elements 
in Th. The case of a single element has already been settled by Lemma 17. 

Now, consider a triangulation Th of Q comnprising n elements, n > 1. Remove a 
simplex T C Th that meets the following requirements: 

* T is adjacent to the boundary OQ. 
* If F 7t 0, then at least one face of T should belong to F. On the other hand, 

T r F should verge on the boundary of F in OQ, if F =I &Q. 
There is no doubt that such a T can always be found. 

The removal of T creates another simply connected domain Q', which is triangu- 
lated by n -1 elements. Set F':= r n Q' and note that F' is also simply connected, 
if nonempty. 

By the induction hypotheses, we can find 7r' E X~-(Q', Th) such that d7r' = w 
in Q' and 7rip = 0. At this stage, we have to exploit the assumption that Q' is 
simply connected. This assumption makes sure that xr' has a well defined trace onto 
OT n OQ'. As a consequence, all degrees of freedom located on OT n aQ' give a well 



defined value for ir'. Setting the remaining degrees of freedom associated with T 
equal to zero yields a valid extension of ir' to a differential form ir C X-1 (Q, h). 

But u:= w - dir can be nonzero only on T and has vanishing trace on ATn a0f 
and OT n F. According to the previous lemma there exists a T C <-I1(T) with 
dT = a - dir and zero trace on the same faces as a. This property of TIOT permits us 

to extend T by zero to an element of "7-1 (Q; Th) (also designated by T). Obviously 
7 iF + T C Xl<-I (Q, Th) supplies the desired potential. El 

Remark 19. A simple example can illustrate why it is significant that Q is simply 
connected. Consider the 2D situation sketched in Figure 1 and the case 1 = 1. 
Thus, we seek discrete potentials among plain scalar Lagrangian finite element 
functions. Evaluating them at vertices provides the most basic degrees of freedom 
that Definition 9 describes. Now, there might exist a well-defined potential ir' 

for w on Q' = Q/T. Nevertheless, it is by no means guaranteed that ir' can be 

continuously extended onto Q'; inconsistent values in x* might emerge! Obviously, 
this rules out a continuation of ir' onto the entire domain Q. 

6. CONCLUSION 

In this paper we have developed a fully canonical construction of simplicial finite 
elements, which are conforming with respect to spaces related to differential opera- 
tors from vector analysis. Previously, only separate, seemingly unrelated, schemes 
in two and three dimensions were available. Moreover, to prove the validity of these 
approaches required a significant technical effort in each case. Our theory offers an 
elegant remedy: a single proof that covers all cases. Moreover, important results 
like the discrete representation theorem and the commuting diagram property had 
not been established in full generality before. All this could be achieved by an 
unprecedented application of the theory of differential forms in the mathematical 
analysis of algebraic aspects of finite element schemes. 
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